The aliasing problem in lattice field theory
نویسنده
چکیده
The intrinsically nonlinear nature of quantum field theory provides a fundamental complication for lattice calculations, when the physical implications of the subtleties of Fourier theory are taken into account. Even though the fundamental fields are constrained to the first Brillouin zone, Fourier theory tells us that the high-momentum components of products of these fields “bleed into” neighbouring Brillouin zones, where they “alias” (or “masquerade”) as low-momentum contributions, violating the conservation of energy and momentum, and fundamentally distorting calculations. In this paper I offer a general strategy for eliminating the artefacts of aliasing in practical calculations.
منابع مشابه
2 00 4 The aliasing problem in lattice field theory
The intrinsically nonlinear nature of quantum field theory provides a fundamental complication for lattice calculations, when the physical implications of the subtleties of Fourier theory are taken into account. Even though the fundamental fields are constrained to the first Brillouin zone, Fourier theory tells us that the high-momentum components of products of these fields “bleed into” neighb...
متن کاملMagnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice
In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4), ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...
متن کاملMagnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice
Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization, internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.
متن کاملAliasing modes in the lattice Schwinger model
We study the Schwinger model on a lattice consisting of zeros of the Hermite polynomials that incorporates a lattice derivative and a discrete Fourier transform with many properties. Such a lattice produces a Klein-Gordon equation for the boson field and the exact value of the mass in the asymptotic limit if the boundaries are not taken into account. On the contrary, if the lattice is considere...
متن کاملLattice-Plasmon Quantum Features
in this work, some of the lattice plasmon quantum features are examined. Initially, the interaction of the far-field photonic mode and the nanoparticle plasmon mode is investigated. We probe the optical properties of the array plasmon that are dramatically affected by the array geometry. It is notable to mention that the original goal of this work is to examine the quantum feature of the array ...
متن کامل